UDP是一个简单的面向数据报的运输层协议:进程的每个输出操作都正好产生一个UDP数据报,并组装成一份待发送的IP数据报。这与面向流字符的协议不同,如TCP,应用程序产生的全体数据与真正发送的单个IP数据报可能没有什么联系。

UDP用户数据报协议

UDP封装的IP数据报的格式

IP首部 UDP首部 UDP数据
UDP封装

1:UDP不提供可靠性:它把应用程序传给IP层的数据发送出去,但是并不保证它们能到达目的地。

2.应用程序必须关心IP数据报的长度。如果它超过网络的MTU,那么就要对IP数据报进行分片。如果需要,源端到目的端之间的每个网络都要进行分片,并不只是发送端主机连接第一个网络才这样做.

UDP首部

16位源端口号 16位目的端口号
16位UDP长度 16位UDP检验和
数据(如果有)

UDP长度字段指的是UDP首部和UDP数据的字节长度。该字段的最小值为8字节(发送一份0字节的UDP数据报是OK)。这个UDP长度是有冗余的。IP数据报长度指的是数据报全长,因此UDP数据报长度是全长减去IP首部的长度

UDP数据报和TCP段都包含一个12字节长的伪首部,它是为了计算检验和而设置的。伪首部包含IP首部一些字段。其目的是让UDP两次检查数据是否已经正确到达目的地

UDP检验和覆盖UDP首部和UDP数据。回想IP首部的检验和,它只覆盖IP的首部—并不覆盖IP数据报中的任何数据。

UDP和TCP在首部中都有覆盖它们首部和数据的检验和。UDP的检验和是可选的,而TCP的检验和是必需的。

尽管UDP检验和的基本计算方法与我们在IP首部检验和计算方法相类似(16 bit字的二进制反码和),但是它们之间存在不同的地方。首先,UDP数据报的长度可以为奇数字节,但是检验和算法是把若干个16 bit字相加。解决方法是必要时在最后增加填充字节0,这只是为了检验和的计算(也就是说,可能增加的填充字节不被传送)。

其次,UDP数据报和TCP段都包含一个12字节长的伪首部,它是为了计算检验和而设置的。伪首部包含IP首部一些字段。其目的是让UDP两次检查数据是否已经正确到达目的地(例如,IP没有接受地址不是本主机的数据报,以及IP没有把应传给另一高层的数据报传给UDP)。


UDP伪首部

32位源IP地址
32位目的IP地址
0 8位协议(17) 16位UDP长度
16位源端口号 16位目的端口号
16位UDP长度 16位UDP检验和
数据
填充字段0


IP分片

物理网络层一般要限制每次发送数据帧的最大长度。任何时候IP层接收到一份要发送的IP数据报时,它要判断向本地哪个接口发送数据(选路),并查询该接口获得其MTU。IP把MTU与数据报长度进行比较,如果需要则进行分片。分片可以发生在原始发送端主机上,也可以发生在中间路由器上。
把一份IP数据报分片以后,只有到达目的地才进行重新组装(这里的重新组装与其他网络协议不同,它们要求在下一站就进行进行重新组装,而不是在最终的目的地)。重新组装由目的端的IP层来完成,其目的是使分片和重新组装过程对运输层(TCP和UDP)是透明的,除了某些可能的越级操作外。已经分片过的数据报有可能会再次进行分片(可能不止一次)。IP首部中包含的数据为分片和重新组装提供了足够的信息。

IP在从上层接到数据以后,要根据IP地址来判断从那个接口发送数据(通过选路),并进行MTU的查询,如果数据大小超过MTU 就进行数据分片。数 据的分片是对上层和下层透明,而数据也只是到达目的地还会被重新组装,不过不用担心,IP 层提供了足够的信 息进行数据的再组装。

在 IP 头里面,16bit 识别号唯一记录了一个 IP 包的 ID,具有同一个 ID 的 IP 片将会被重新组装;而13位片偏移则记录了某 IP 片相对整个包的 位置;而这两个表示中间的3bit 标志则标示着该分片后面是否还有新的分片。这三个标示就组成了 IP 分片的所有信息,接 受方就可以利用这些信息对 IP 数据 进行重新组织(就算是后面的分片比前面的分片先到,这些信息也是足够了)。


UDP 和 ARP 之间的交互式用

这是不常被人注意到的一个细节,这是针对一些系统地实现来说的。当 ARP 缓存还是空的时候。UDP 在被发送之前一定要发送一个 ARP 请求来获得目的 主机的 MAC 地址,如果这个 UDP 的数据包足够大,大到 IP 层一定要对其进行分片的时候,想象中,该 UDP 数据包的第一个分片会发出一个 ARP 查询请求, 所有的分片都辉等到这个查询完成以后再发送。事实上是这样吗?

结果是,某些系统会让每一个分片都发送一个 ARP 查询,所有的分片都在等待,但是接受到第一个回应的时候,主机却只发送了 最后一个数据片而抛弃了其 他,这实在是让人匪夷所思。这样,因为分片的数据不能被及时组装,接受主机将会在一段时间内将永远 无法组装的 IP 数据包抛弃,并且发送组装超时的 ICMP 报文(其实很多系统不产生这个差错),以保证接受主机自己的接收端缓存不 被那些永远得不到组装的分片满。


ICMP 源站抑制差错

当目标主机的处理速度赶不上数据接收的速度,因为接受主机的 IP 层缓存会被占满,所以主机就会发出一个“我受不了”的一个 ICMP 报文。


UDP 服务器设计

UDP 协议的某些特性将会影响我们的服务器程序设计,大致总结如下:

1 关于客户IP和地址:服务器必须有根据客户IP地址和端口号判断数据包是否合法的能力(这似乎要求每一个服务器都要具备)
2 关于目的地址:服务器必须要有过滤广播地址的能力。
3 关于数据输入:通常服务器系统的每一个端口号都会和一块输入缓冲区对应,进来的输入根据先来后到的原则等待服务器的处理,所以难免会出现缓冲区溢出的问题,这种情况下,UDP 数据包可能会被丢弃,而应用服务器程序本身并不知道这个问题。
4 服务器应该限制本地IP地址,就是说它应该可以把自己绑定到某一个网络接口的某一个端口上。






上一页  TCP/IP学习理解(六)

下一页  TCP/IP学习理解(八)